
Leveraging Apache Spark for Appliance-Level
Load Monitoring with Ensemble Learning

Techniques

Iosif Arvanitis1 , Menelaos Panagiotis Papastergiou1 , Agorakis Bompotas1 ,
Evangelos Geraridis1 , Ioanna Giannoukou2 , Ioannis Karydis3 , and Spyros

Sioutas1

1 Dept. of Computer Engineering and Informatics, University of Patras, 26 504
Patras, Greece

2 Dept. of Management Science and Technology, University of Patras, 26 334 Patras,
Greece

3 Dept. of Informatics, Ionian University, Kerkyra 49 132, Greece

Abstract. Appliance load monitoring measures the electricity consump-
tion of household appliances, driven by motivations such as financial sav-
ings, reducing environmental impact, and predictive maintenance. It pro-
vides users with detailed energy usage information, leading to informed
decisions about appliance operation and replacement, significant savings,
and reduced carbon footprints. Traditionally relying on individual smart
meters, a costly and complex method, load monitoring has evolved with
non-intrusive load monitoring (NILM), which estimates individual appli-
ance power use by analyzing overall household consumption. This shift,
coupled with the exponential data growth from widespread smart me-
ter adoption, necessitates scalable processing techniques. Apache Spark,
a distributed processing framework, offers a solution with its scalabil-
ity and flexibility, handling expanding workloads effectively. However,
due to Spark’s lack of built-in support for deep learning and specialized
NILM algorithms, in this paper, we explore whether simpler solutions
like Random Forests and Gradient-Boosted trees within Spark’s MLlib
are able to produce satisfactory results. Our experimental evaluation
demonstrated that these algorithms perform well, especially for devices
with smoother consumption patterns, highlighting the potential of shal-
low machine learning techniques in NILM applications, making them
practical for real metering systems where data volume and speed rule
out more complex solutions.

Keywords: Machine Learning · Distributed Systems · Energy consump-
tion · Non-Intrusive Load Monitoring · Energy Disaggregation

1 Introduction

Appliance load monitoring is the practice of measuring the electricity consump-
tion of household appliances. There are various motivations for its development,

https://orcid.org/0009-0002-9548-7757
https://orcid.org/0009-0007-3857-5407
https://orcid.org/0000-0002-6063-8562
https://orcid.org/0009-0002-8682-2103
https://orcid.org/0000-0003-2112-6430
https://orcid.org/0000-0002-9470-2729
https://orcid.org/0000-0003-1825-5565


2 I. Arvanitis et al.

of which the main ones are financial savings, reducing environmental impact and
predictive maintenance. Information regarding how much energy each appliance
consumes, may empower the users of load monitoring to make informed decisions
regarding equipment operation, purchase and replacement. Indeed, such feedback
has been shown to result in significant savings for domestic applications [9]. In
addition to savings, utilizing appliances in an energy efficient manner, reduces
a household’s carbon footprint. Moreover, load monitoring allows the users to
identify or even predict potential appliance failures, resulting in increase reliabil-
ity of these devices, and reduce related costs. Predictive maintenance techniques
have also been shown to result in substantial savings for the users [14,7].

Traditionally, load monitoring relied on installing smart meters for each ap-
pliance. While this method provides highly accurate results, it suffers from sev-
eral drawbacks. For instance, installing individual smart meters can be time-
consuming, costly and inconvenient. Non-intrusive load monitoring (NILM) of-
fers a promising alternative by analyzing the whole household’s electricity con-
sumption. NILM disaggregates this signal to estimate individual appliance power
use, achieving the benefits of traditional methods without the high cost and in-
stallation complexity. However, NILM is not without limitations. The accuracy of
disaggregating specific device readings can be affected by various factors, includ-
ing appliances with similar power signatures, low-power devices, and dynamic
loads with fluctuating power draw [19].

A model suitable for NILM application takes as the aggregate power as the
input signal, and aims to infer the individual power consumption of each appli-
ance. We can formulate the problem as an inverse summation problem. For a
given household with n appliances, at each given moment Ptotal represents the
total power draw of all appliances, plus an error term e which accounts for noise,
unidentified or very low power devices. NILM aims to recover the individual ap-
pliance power draws, Pi such that:

Ptotal(t) =

n∑
i=1

Pi(t) + e(t)

By modeling each appliance as a finite state machine, we can identify changes
in power draw and infer the operating state of each device. The most common
assumption is that appliances have two states (ON/OFF). A classification prob-
lem can emerge from the regression problem we formulated: the model predicts
the state of each appliance at a given moment [22].

With the widespread adoption of smart meters, the volume of collected data
has grown exponentially and high frequency measurements only intensify this
issue. For instance, prominent datasets REDD and UK-Dale [18,16], measured
electrical data for 6 and 5 households respectively, whereas the Pecan Street’s
Dataport [20], includes measurements to more than 600 households across the
US. This transition propels NILM into the big data domain, demanding the
development of scalable techniques to handle the complexities of processing and
analyzing vast amounts of data for appliance-level recognition.



Title Suppressed Due to Excessive Length 3

The objective of this work is to take steps in addressing this shift. We propose
Apache Spark, a distributed processing framework as a suitable solution for tack-
ling NILM at scale. We specifically evaluate the effectiveness of Spark’s ensem-
ble learning algorithms, Gradient Boosted Trees (GBTs) and Random Forests,
for appliance-level regression. To this end, we use a subset of the ENERTALK
dataset [25]. This initial exploration focuses on shallow learning ensemble meth-
ods, paving the way for further investigation into more complex models suited
for big data applications in NILM. Our findings aim to contribute to the develop-
ment of distributed machine learning solutions that can handle the ever-growing
volume of data associated with smart meter deployments.

This paper is structured as follows. In Section 2, we provide a brief overview
of methods and datasets used in NILM. In Section 3, we demonstrate the ex-
perimental setup used for the assessment of the models discussed. In Section 4
the results of our work are presented. Closing, Section 5 briefly summarizes our
observations and conclusions.

2 Related Work

The field of NILM was pioneered by G. W. Hart’s seminal work during the
80s and 90 [12]. Hart’s approach involved pattern recognition in power draw
signals and combinatorial optimization to identify individual appliance states
that collectively explain the total power consumption. Since then, a wealth of
algorithms and techniques have been used for NILM. Several surveys provide a
comprehensive overview of the current state of the art [11,2,27,24].

As the surveys indicate, deep learning methods have become increasingly
more popular in recent years. Whoever, there are several well-established tech-
niques predating deep learning methods. We mention some of the most widely
applied approaches. Hidden Markov Models (HMMs) statistically analyze power
sequences, identifying hidden states that correspond to appliance activity. Fac-
torial HMMs (FHMMs) extend this concept to handle multiple appliances simul-
taneously [17,21]. Optimization techniques search for the closest combination of
appliance states to approximate the total power draw. Genetic algorithms and
integer programming are two such approaches [6,3]. Shallow learning has also
been applied to this problem, most often via Support Vector Machines, Decision
Trees, Random Forests and Gradient Boosted Trees [8,13]. Other techniques in-
clude signal processing and graph signal processing methods, (fuzzy) clustering,
Bayesian procedures and others [23,29,10].

Artificial neural networks have proven their effectiveness on this problem
due to their ability to both recognize power consumption patterns and accurately
identify devices [26]. Convolutional Neural Networks (CNNs) can effectively cap-
ture the spatial patterns within the data, useful for identifying appliances with
distinct power signatures [28]. NILM datasets are comprised by time series data,
which lends itself naturally to Recurrent Neural Networks (RNNs). Particularly
Long Short-Term Memory (LSTMs) excel at handling the sequential nature of
power measurements, allowing them to learn temporal dependencies within the



4 I. Arvanitis et al.

power draws [15]. Gated Recurrent Units (GRUs) are used to replicate this at-
tribute of LSTMs, with lower computational cost. Autoencoders offer another
deep learning approach, where the network learns a compressed representation of
the power signal, potentially highlighting key features that differentiate appliance
usage. These deep learning methods have demonstrated impressive performance
in NILM, receiving the attention of researchers as Angelis et. al. [2] highlight.

This advancement in disaggregation techniques could not have taken place
without datasets which made a twofold contribution to the field of NILM. Quality
datasets enable training and evaluation of sophisticated models while also provid-
ing a baseline for method comparison. The most prominent datasets within the
literature are REDD, UK-DALE, BLUED, ECO among many others [18,16,5,1].
The present work, has been based on the ENERTALK [25] dataset. Also provid-
ing meaningful comparisons, NILMTK is a library of utilities and algorithms,
aiming to provide benchmark algorithms for NILM, and aides in working with
various datasets [4].

3 Experimental Setup

We make use of on an Apache Spark cluster using the Spark MLlib API for
execution of our experiments. More specifically, we used RandomForestRegressor
and GBTRegressor from MLlib for our experiments. Those regression algorithms
are optimized to work on the distributed Spark environment and provide a user-
friendly API for users integrating similar models from non-distributed source
code to Spark.

The ENERTALK dataset was used to train the models. Aggregate and per-
appliance measurements were collected at a sampling rate of 15 Hz for 22 houses.
Data were collected for 29 to 122 days, depending on the house, and for up to
7 appliances in each house. AMI technology was used instead of conventional
meters to enhance responsiveness and sampling rates. For our work, data from
house 00 was used for training. We trained models for appliances in the house
including a refrigerator, a rice cooker, a washing machine, a TV, a microwave
oven, a water heater and a kimchi refrigerator.

Training was performed on the active power of appliances and the aggregated
signal. Active power (P) refers to the usable or consumed energy of an AC circuit
measured in Watts (W).

P = V · I · cos(θ)

where V is the RMS (Root Mean Square) voltage of the house, I is the RMS
current derived from the AC waveform, and θ is the phase angle between the
two.

Initially, each dataset was uploaded and cached into Spark dataframes in the
cluster for efficient computations. We consider only the active power for each
appliance and the aggregated measurements so the rest of the time series was
dropped. Based on the active power of the house sensor at a specific timestamp,
we make a prediction for each appliance in the house at that exact timestamp



Title Suppressed Due to Excessive Length 5

using each one of the models. Then, we compare the predicted value with the
actual measurement of the sensor at that moment.

We trained a Random Forest and a Gradient Boosted Tree for each appliance.
Those ensemble shallow learning models were selected both for their ability to
capture non-linear correlations in the data, which are prevalent in NILM, and
their relatively fast training speed, compared to other more complex models.
The models are required to perform well to be useful for various applications,
but their training should also be relatively fast to allow for real time retraining
based on new supplied data. A case can be made for edge computation capability,
where the processing power is also constrained, further diminishing the speed at
which models can retrain. Those two conflicting factors influenced the majority
of design decisions we took on our approach.

We performed our training using 80% of the measured values and evaluated
the performance of the models using the remaining 20% of the values. Before
training, a normalization phase took place, where each value was scaled to reside
in range [0, 1] using a min-max scaler. Parameter selection for the models was
influenced by the following two factors. We tried to maximize the size of our
models in hope of greater performance, while maintaining good overall speed of
training. Random Forests are parameterized mostly on the maximum number of
trees allowed and the maximum depth of each tree. To keep our models efficient,
we used up to 100 trees per model and each tree had at most 20 levels.

The Gradient Boosted Tree models are characterized by their maximum
depth. Another parameter that is specified during training is the number of
iterations or stages in which the weak learner of the previous stage is improved
in order to minimize the residuals left over. The number of iterations forms an
important factor when estimating the training speed of the algorithm and thus
was kept relatively small, at 80 iterations per model. The maximum depth was
also reduced to 10 to allow greater performance and flexibility of the models so
as to not overfit.

4 Results

In order to evaluate the performance of our models we employed a variety of
different performance metrics. More specifically we present the root mean squared
error (RMSE), the mean average error (MAE) and the R2 metrics of each of
the trained models. The performance on each appliance based on those metrics
is presented below.

In general, the performance of both the random forest and the gradient
boosted tree models on each appliance was similar. Gradient boosted trees per-
formed slightly better, but the difference in performance is negligible. This im-
plies that ensemble shallow learning models tend to have similar performance on
NILM and greater performance should be expected by models of greater learning
capacity, like deep learning models. An argument for gradient boosted trees can
be made as they tend to have a smaller memory footprint than random forests,
due to their iterative approach to learning.



6 I. Arvanitis et al.

Appliance RMSE MAE R2

Refrigerator 29.786 8.043 0.509
Rice Cooker 0.058 0.046 0.004

Washing Machine 108.675 24.271 0.905
TV 13.9 7.148 0.907

Microwave Oven 12.26 0.709 0.645
Kimchi Refrigerator 29.786 8.043 0.509

Water Heater 24.529 5.745 0.849

Table 1. Evaluation metrics for the Random Forest models

Appliance RMSE MAE R2

Refrigerator 28.737 4.92 0.543
Rice Cooker 0.058 0.046 0.001

Washing Machine 94.77 10.556 0.927
TV 12.699 4.393 0.923

Microwave Oven 11.797 0.447 0.671
Kimchi Refrigerator 28.737 4.92 0.543

Water Heater 25.21 3.875 0.841

Table 2. Evaluation metrics for the Gradient Boosted Tree models

Depending on the appliance type, the models performance varied signifi-
cantly, as one can observe from the evaluation metrics. The worst performing
model was that of the rice cooker, where R2 was close to 0. The active power
of the rice cooker was very low, compared to the aggregate measurements, as
this appliance was mostly idle. Such small measurements are hard to predict ac-
curately and relations cannot be extracted easily from that dataset. If we were
concerned with classification of the state of operation, on the other hand, both
models would accurately predict the correct (idle) state, as they both predicted
very small active power for the rice cooker.

The refrigerator and kimchi refrigerator, for which the models performed al-
most identical, also gave models that perform weakly. Those devices are always
open and their active power consumption rarely has spikes during their opera-
tion. Because of this, it is hard to predict when those devices will show power
spikes, which, in turn, does not allow for easy event detection. The models did
fit well on the data, concerning the always open operation of the refrigerators.

Overall, for the rest of the appliances, both models performed well and fit the
data properly. Overfitting, which was accounted for in the selection of smaller
parameters for our models, was not really observed in any case. Those two obser-
vations imply that by constraining the size of ensemble shallow learning models,
to allow for fast training and smaller memory footprint, adequate performance
for active power prediction of common appliances can be obtained. It is worth
mentioning that the large size of the dataset did contribute to the accuracy of
our models and allowed for smaller models to perform well.



Title Suppressed Due to Excessive Length 7

5 Discussion

IoT devices generate vast amounts of data at high velocity, necessitating systems
or frameworks that can handle real-time stream processing and large-scale data
analytics. Apache Spark, with its in-memory computing and parallel processing
abilities, excels in processing data streams from various IoT devices efficiently.
Its integrated libraries like Spark Streaming allow for seamless data ingestion
and processing, making it possible to perform complex event processing and
real-time analytics. Moreover, Apache Spark’s scalability and flexibility make it
ideal for IoT ecosystems. As IoT deployments grow, the data volume increases
exponentially, requiring a scalable solution that can handle expanding workloads
without compromising performance. Spark’s distributed computing model allows
it to scale out across clusters, ensuring that large datasets from numerous IoT
sensors can be processed timely and efficiently. Furthermore, Spark provides
excellent support for varied data sources, along with built-in machine learning
and graph processing libraries. The aforementioned capabilities are crucial when
dealing with IoT data and make Apache Spark essential in processing such data.

Nevertheless, Apache Spark, despite its strengths, does not come without lim-
itations. More specifically it lacks innate support for deep learning algorithms.
While Spark can integrate with external deep learning frameworks like Tensor-
Flow or PyTorch, this can add significant complexity and often leads to subop-
timal performance because of the data that needs to be exchanged among the
cluster’s nodes. Thus, for applications that depend upon sophisticated neural
network models, Spark’s current ecosystem may not be the most efficient choice
as it requires additional tools and infrastructure to achieve the desired outcomes.
Similarly, Spark does not have dedicated libraries or APIs for NILM. NILM in-
volves specialized algorithms that require precise and domain-specific processing
capabilities, which are not directly addressed by Spark’s general-purpose data
processing framework. While Spark’s machine learning library, MLlib, offers a
range of standard algorithms, it does not cater specifically to NILM’s unique
requirements.

However, the nature of the problem necessitates the use of big data frame-
works, as the sheer volume and velocity of data demands robust and scalable
processing capabilities. This gap in capabilities means that, while we can han-
dle the data volume and processing speed, we are often left without the precise
analytical tools required to extract the most valuable insights from our data. In
an attempt to overcome these limitations, we explored whether simpler solutions
might yield adequate results. This involved testing more straightforward algo-
rithms and methods that are inherently supported by Apache Spark’s MLlib.
While these simpler solutions are easier to implement and integrate, they might
be deficient in terms of accuracy and depth of analysis as the complexity of the
problem’s domain often requires advanced techniques that go beyond the capa-
bilities of these basic approaches. Thankfully, as the results presented in this
paper suggest this was not the case here.

In summary, it was observed that the algorithms of random forests and
Gradient-Boosted trees used produced quite satisfactory results. Their metrics



8 I. Arvanitis et al.

were quite similar, with the gradient-boosted trees algorithm appearing to have
a slight edge on average across the devices. At the level of each device, the
gradient-boosted trees continue to outperform the random forests, with the ex-
ception of a few devices where the random forests seem to provide a slightly
better interpretation of their consumption. Finally, it was noted that for devices
with smoother consumption over time, such as refrigerators, the produced results
are of higher quality. The experimental evaluation that wasw performed demon-
strated the potential of even simpler, shallow Machine Learning techniques in
solving the NILM problem. This result is particularly important because these
techniques are immediately applicable in real metering systems, where the vol-
ume of data and the speed at which it is generated make more complex solutions
practically impossible.

Acknowledgments. This work has been co-financed by the European Regional De-
velopment Fund of the European Union and Greek National funds through the Opera-
tional Program Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH–CREATE–INNOVATE (project code: Τ2ΕΔΚ-00127). This work has also
received funding by the European Union for the project REMARKABLE (project code:
GA101086387). Views and opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union or the European Research
Executive Agency (REA). Neither the European Union nor the granting authority can
be held responsible for them.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Anderson, K.D., Ocneanu, A., Carlson, D.R., Rowe, A.G., Berges, M.E.: Blued : A
fully labeled public dataset for event-based non-intrusive load monitoring research
(2012), https://api.semanticscholar.org/CorpusID:25397318

2. Angelis, G.F., Timplalexis, C., Krinidis, S., Ioannidis, D., Tzovaras, D.: Nilm appli-
cations: Literature review of learning approaches, recent developments and chal-
lenges. Energy and Buildings 261, 111951 (02 2022). https://doi.org/10.1016/j.
enbuild.2022.111951

3. Baranski, M., Voss, J.: Genetic algorithm for pattern detection in nialm systems.
In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE
Cat. No.04CH37583). vol. 4, pp. 3462–3468 vol.4 (Oct 2004). https://doi.org/10.
1109/ICSMC.2004.1400878

4. Batra, N., Kelly, J., Parson, O., Dutta, H., Knottenbelt, W., Rogers, A., Singh, A.,
Srivastava, M.: Nilmtk: an open source toolkit for non-intrusive load monitoring.
In: Proceedings of the 5th International Conference on Future Energy Systems.
p. 265–276. e-Energy ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2602044.2602051, https://doi.org/10.1145/
2602044.2602051

5. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The eco data set
and the performance of non-intrusive load monitoring algorithms. In: Proceedings
of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings.

https://api.semanticscholar.org/CorpusID:25397318
https://doi.org/10.1016/j.enbuild.2022.111951
https://doi.org/10.1016/j.enbuild.2022.111951
https://doi.org/10.1016/j.enbuild.2022.111951
https://doi.org/10.1016/j.enbuild.2022.111951
https://doi.org/10.1109/ICSMC.2004.1400878
https://doi.org/10.1109/ICSMC.2004.1400878
https://doi.org/10.1109/ICSMC.2004.1400878
https://doi.org/10.1109/ICSMC.2004.1400878
https://doi.org/10.1145/2602044.2602051
https://doi.org/10.1145/2602044.2602051
https://doi.org/10.1145/2602044.2602051
https://doi.org/10.1145/2602044.2602051


Title Suppressed Due to Excessive Length 9

p. 80–89. BuildSys ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2674061.2674064, https://doi.org/10.1145/
2674061.2674064

6. Bhotto, M.Z.A., Makonin, S., Bajić, I.V.: Load disaggregation based on aided lin-
ear integer programming. IEEE Transactions on Circuits and Systems II: Express
Briefs 64(7), 792–796 (July 2017). https://doi.org/10.1109/TCSII.2016.2603479

7. Bradbury, S., Carpizo, B., Getnzel, M., Horah, D., Thibert, J.: Digitally enabled
reliability: Beyond predictive maintenance. Company Report (10 2018)

8. Chen, Z., Chen, J., Xu, X., Peng, S., Xiao, J., Qiao, H.: Non-intrusive load moni-
toring based on feature extraction of change-point and xgboost classifier. In: 2020
IEEE 4th Conference on Energy Internet and Energy System Integration (EI2).
pp. 2652–2656 (Oct 2020). https://doi.org/10.1109/EI250167.2020.9347014

9. Darby, S.: The effectiveness of feedback on energy consumption. A Review for
DEFRA of the Literature on Metering, Billing and direct Displays 486 (01 2006)

10. De Baets, L., Ruyssinck, J., Develder, C., Dhaene, T., Deschrijver, D.:
On the bayesian optimization and robustness of event detection methods
in nilm. Energy and Buildings 145, 57–66 (2017). https://doi.org/https:
//doi.org/10.1016/j.enbuild.2017.03.061, https://www.sciencedirect.com/science/
article/pii/S037877881631605X

11. Faustine, A., Mvungi, N.H., Kaijage, S., Michael, K.: A survey on non-intrusive
load monitoring methodies and techniques for energy disaggregation problem
(2017), https://arxiv.org/abs/1703.00785

12. Hart, G.: Nonintrusive appliance load monitoring. Proceedings of the IEEE 80(12),
1870–1891 (Dec 1992). https://doi.org/10.1109/5.192069

13. Jain, A.K., Ahmed, S.S., Sundaramoorthy, P., Thiruvengadam, R., Vijayaragha-
van, V.: Current peak based device classification in nilm on a low-cost embedded
platform using extra-trees. In: 2017 IEEE MIT Undergraduate Research Tech-
nology Conference (URTC). pp. 1–4 (Nov 2017). https://doi.org/10.1109/URTC.
2017.8284200

14. Jiang, L., Li, J., Luo, S., West, S., Platt, G.: Power load event detection and
classification based on edge symbol analysis and support vector machine. Ap-
plied Computational Intelligence and Soft Computing 2012(1), 742461 (2012).
https://doi.org/https://doi.org/10.1155/2012/742461, https://onlinelibrary.wiley.
com/doi/abs/10.1155/2012/742461

15. Kelly, J., Knottenbelt, W.: Neural nilm: Deep neural networks applied to en-
ergy disaggregation. In: Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments. BuildSys ’15, ACM
(Nov 2015). https://doi.org/10.1145/2821650.2821672, http://dx.doi.org/10.1145/
2821650.2821672

16. Kelly, J., Knottenbelt, W.: The uk-dale dataset, domestic appliance-level electricity
demand and whole-house demand from five uk homes. Scientific Data 2(1), 150007
(Mar 2015). https://doi.org/10.1038/sdata.2015.7, https://doi.org/10.1038/sdata.
2015.7

17. Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J.: Unsupervised Disag-
gregation of Low Frequency Power Measurements, pp. 747–758 (2011). https:
//doi.org/10.1137/1.9781611972818.64, https://epubs.siam.org/doi/abs/10.1137/
1.9781611972818.64

18. Kolter, J., Johnson, M.: Redd: A public data set for energy disaggregation research.
Artif. Intell. 25 (01 2011)

19. Meier, A., Cautley, D.: Practical limits to the use of non-intrusive load monitoring
in commercial buildings. Energy and Buildings 251, 111308 (2021)

https://doi.org/10.1145/2674061.2674064
https://doi.org/10.1145/2674061.2674064
https://doi.org/10.1145/2674061.2674064
https://doi.org/10.1145/2674061.2674064
https://doi.org/10.1109/TCSII.2016.2603479
https://doi.org/10.1109/TCSII.2016.2603479
https://doi.org/10.1109/EI250167.2020.9347014
https://doi.org/10.1109/EI250167.2020.9347014
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.03.061
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.03.061
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.03.061
https://doi.org/https://doi.org/10.1016/j.enbuild.2017.03.061
https://www.sciencedirect.com/science/article/pii/S037877881631605X
https://www.sciencedirect.com/science/article/pii/S037877881631605X
https://arxiv.org/abs/1703.00785
https://doi.org/10.1109/5.192069
https://doi.org/10.1109/5.192069
https://doi.org/10.1109/URTC.2017.8284200
https://doi.org/10.1109/URTC.2017.8284200
https://doi.org/10.1109/URTC.2017.8284200
https://doi.org/10.1109/URTC.2017.8284200
https://doi.org/https://doi.org/10.1155/2012/742461
https://doi.org/https://doi.org/10.1155/2012/742461
https://onlinelibrary.wiley.com/doi/abs/10.1155/2012/742461
https://onlinelibrary.wiley.com/doi/abs/10.1155/2012/742461
https://doi.org/10.1145/2821650.2821672
https://doi.org/10.1145/2821650.2821672
http://dx.doi.org/10.1145/2821650.2821672
http://dx.doi.org/10.1145/2821650.2821672
https://doi.org/10.1038/sdata.2015.7
https://doi.org/10.1038/sdata.2015.7
https://doi.org/10.1038/sdata.2015.7
https://doi.org/10.1038/sdata.2015.7
https://doi.org/10.1137/1.9781611972818.64
https://doi.org/10.1137/1.9781611972818.64
https://doi.org/10.1137/1.9781611972818.64
https://doi.org/10.1137/1.9781611972818.64
https://epubs.siam.org/doi/abs/10.1137/1.9781611972818.64
https://epubs.siam.org/doi/abs/10.1137/1.9781611972818.64


10 I. Arvanitis et al.

20. Parson, O., Fisher, G., Hersey, A., Batra, N., Kelly, J., Singh, A., Knottenbelt, W.,
Rogers, A.: Dataport and nilmtk: A building data set designed for non-intrusive
load monitoring. In: 2015 IEEE Global Conference on Signal and Information Pro-
cessing (GlobalSIP). pp. 210–214 (Dec 2015). https://doi.org/10.1109/GlobalSIP.
2015.7418187

21. Parson, O., Ghosh, S., Weal, M., Rogers, A.: Non-intrusive load monitoring us-
ing prior models of general appliance types. Proceedings of the AAAI Conference
on Artificial Intelligence 26(1), 356–362 (Sep 2021). https://doi.org/10.1609/aaai.
v26i1.8162, https://ojs.aaai.org/index.php/AAAI/article/view/8162

22. Precioso, D., Gómez-Ullate, D.: Thresholding methods in non-intrusive load
monitoring. The Journal of Supercomputing 79(13), 14039–14062 (Apr
2023). https://doi.org/10.1007/s11227-023-05149-8, http://dx.doi.org/10.1007/
s11227-023-05149-8

23. Puente, C., Palacios, R., González-Arechavala, Y., Sánchez-Úbeda, E.F.: Non-
intrusive load monitoring (nilm) for energy disaggregation using soft computing
techniques. Energies 13(12) (2020). https://doi.org/10.3390/en13123117, https:
//www.mdpi.com/1996-1073/13/12/3117

24. Revuelta Herrero, J., Lozano Murciego, A., Barriuso, A., Hernandez de la Iglesia,
D., Villarrubia, G., Corchado Rodríguez, J., Carreira, R.: Non intrusive load mon-
itoring (nilm): A state of the art. pp. 125–138 (06 2018). https://doi.org/10.1007/
978-3-319-61578-3_12

25. Shin, C., Lee, E., Han, J., Yim, J., Rhee, W., Lee, H.: The enertalk dataset, 15
hz electricity consumption data from 22 houses in korea. Scientific Data 6(1), 193
(Oct 2019). https://doi.org/10.1038/s41597-019-0212-5, https://doi.org/10.1038/
s41597-019-0212-5

26. Srinivasan, D., Ng, W., Liew, A.: Neural-network-based signature recognition for
harmonic source identification. IEEE Transactions on Power Delivery 21(1), 398–
405 (Jan 2006). https://doi.org/10.1109/TPWRD.2005.852370

27. Verma, A., Anwar, A., Mahmud, M.A.P., Ahmed, M., Kouzani, A.: A compre-
hensive review on the nilm algorithms for energy disaggregation (2021), https:
//arxiv.org/abs/2102.12578

28. Zhang, C., Zhong, M., Wang, Z., Goddard, N., Sutton, C.: Sequence-to-point
learning with neural networks for nonintrusive load monitoring (2017), https:
//arxiv.org/abs/1612.09106

29. Zhao, B., Stankovic, L., Stankovic, V.: Blind non-intrusive appliance load mon-
itoring using graph-based signal processing. In: 2015 IEEE Global Conference
on Signal and Information Processing (GlobalSIP). pp. 68–72 (Dec 2015). https:
//doi.org/10.1109/GlobalSIP.2015.7418158

https://doi.org/10.1109/GlobalSIP.2015.7418187
https://doi.org/10.1109/GlobalSIP.2015.7418187
https://doi.org/10.1109/GlobalSIP.2015.7418187
https://doi.org/10.1109/GlobalSIP.2015.7418187
https://doi.org/10.1609/aaai.v26i1.8162
https://doi.org/10.1609/aaai.v26i1.8162
https://doi.org/10.1609/aaai.v26i1.8162
https://doi.org/10.1609/aaai.v26i1.8162
https://ojs.aaai.org/index.php/AAAI/article/view/8162
https://doi.org/10.1007/s11227-023-05149-8
https://doi.org/10.1007/s11227-023-05149-8
http://dx.doi.org/10.1007/s11227-023-05149-8
http://dx.doi.org/10.1007/s11227-023-05149-8
https://doi.org/10.3390/en13123117
https://doi.org/10.3390/en13123117
https://www.mdpi.com/1996-1073/13/12/3117
https://www.mdpi.com/1996-1073/13/12/3117
https://doi.org/10.1007/978-3-319-61578-3_12
https://doi.org/10.1007/978-3-319-61578-3_12
https://doi.org/10.1007/978-3-319-61578-3_12
https://doi.org/10.1007/978-3-319-61578-3_12
https://doi.org/10.1038/s41597-019-0212-5
https://doi.org/10.1038/s41597-019-0212-5
https://doi.org/10.1038/s41597-019-0212-5
https://doi.org/10.1038/s41597-019-0212-5
https://doi.org/10.1109/TPWRD.2005.852370
https://doi.org/10.1109/TPWRD.2005.852370
https://arxiv.org/abs/2102.12578
https://arxiv.org/abs/2102.12578
https://arxiv.org/abs/1612.09106
https://arxiv.org/abs/1612.09106
https://doi.org/10.1109/GlobalSIP.2015.7418158
https://doi.org/10.1109/GlobalSIP.2015.7418158
https://doi.org/10.1109/GlobalSIP.2015.7418158
https://doi.org/10.1109/GlobalSIP.2015.7418158

	Leveraging Apache Spark for Appliance-Level Load Monitoring with Ensemble Learning Techniques

